Chemistry Faculty and Staff

Faculty

Pedro Bernal, Ph.D.
Professor of Chemistry
Bush 367
407.646.2567

B.S., Chemistry, University of Tennessee-Knoxville, 1978
Ph.D., Physical Chemistry, University of Tennessee-Knoxville, 1984 
Post-Doctoral Research, University of Oklahoma-Norman, 1984-1986

SpecialtiesPhysical, General

Research: I engage students in two distinct types of research projects.  Both are concerned with different aspects of the role played by water in our lives.
1.  Volumetric Properties of Water Solutions. In our research group, we are interested in the volumetric properties of solutions.  To have a solution you need a solvent, say water, and a solute (what is dissolved in the solvent).  The molecular structure of both solute and solvent affect the way they interact with each other.  These interactions are important, among other reasons, because they influence the behavior of biological molecules (proteins, nucleic acids, etc.).  We study solute-solvent interactions by measuring how the volume of the solution changes as one changes the pressure and the concentration.  The way the solution behaves as a function of concentration and pressure provides information about solute-solvent interactions and allows us to tell a story about why biological macromolecules behave the way they do in water.

2.  Appropriate Water Purification Interventions. Lack of access to potable water kills about 4000 children a day worldwide.  For that reason, a great deal of attention is being paid to simple devices that allow people to purify water at home.  It is an approach known as “Household Water Treatment and Storage” (HWTS).  We use one of those devices and implement projects in rural communities in the Dominican Republic.  Research in this area can be the testing of HWTS devices in the lab, which may be accompanied by a field experience.

Laurel Goj Habgood, Ph.D.
Associate Professor of Chemistry, Chair, Dept. of Chemistry, Coordinator of Biochemistry/Molec. Biol. Program
Bush 218B
407.628.6344

A.B., Chemistry, Smith College, 1999
Ph.D., Chemistry, Duke University, 2004
Post-Doctoral Research, North Carolina State University, 2004-2006

Specialties: Organic, Inorganic

Research: Consumers use products made from the chemical and pharmaceutical industries daily.  Environmental and economic pressures with current synthetic methods create a need for the development of new ways to make molecules.  My research focuses on the use of transition-metal catalysts for organic transformations.  The goal is to find a different route to making a target molecule that requires less time, energy, reagents, and waste produced.  Current work focuses on the synthesis of iron complexes with N-heterocyclic carbene ligands.  The iron complexes are then screened for different types of reactivity including additions, aromatic substitutions, reductions and oxidations.

Richard W. Gregor, Ph.D.
Visiting Assistant Professor of Chemistry
Bush 173
407.646.1585

B.A., Chemistry, DePauw University, 1972
Ph.D., Chemistry, University of Pittsburgh, 1981

Specialties: Physical, General

Research: For my doctoral research in physical chemistry I studied crossed molecular beams of metastable noble gases, and I retired a few years ago from Bell Labs after a career making integrated circuits.  My research at Rollins focuses on the development of new experiments for the undergraduate organic chemistry curriculum.  I have a particular interest in investigations of the bisphenol family of chemicals known to behave as endocrine disruptors.  

Kelli Kazmier, Ph.D.
Visiting Assistant Professor of Chemistry
Bush 361
407.646.2492

B.S., Biochemistry, Beloit College, 2007

Ph.D., Chemical and Physical Biology, Vanderbilt University, 2013
Post-Doctoral Research, Vanderbilt University, 2013-2014

Specialties: General, Biochemistry

Research: Structural biology seeks to describe the molecular machinery that perform life-sustaining functions for cells and organisms. Over the last 50 years, researchers have deposited over 100,000 static protein structures into the Protein Data Bank, cataloging protein folds, defining motifs of catalysis, and revealing architectures of protein complexes. The next frontier in structural biology will be to characterize protein dynamics as a means of understanding how proteins cycle through intermediate conformations to perform their native functions. In the Kazmier laboratory we apply biochemical, biophysical, and computational approaches to describe protein dynamics and mechanism in a class of proteins called neurotransmitter transporters. Neurotransmitter transporters are responsible for the clearance of neurotransmitters from the synapse and the termination of chemical signaling events in the brain. Understanding the function of these proteins is critical for treating a diverse array of neurological diseases and understanding the chemical basis of drug addiction. 

Amanda J. Norbutus, Ph.D.
Visiting Assistant Professor of Chemistry
Bush 112
407.646.2591

B.A., History, Minor Chemistry, College of the Holy Cross, 2005
M.A., Chemistry, Villanova University, 2008
Ph.D., Preservation Studies, University of Delaware, 2012
Post-Doctoral Research, Villanova University, 2012-2015 

Specialties: General, Art Conservation

Research: Science and art naturally overlap. Both are a means of exploring the world around us. Scientists play a critical role in identifying artistic materials from how art is made to how it ages. Ultimately, scientists play a critical role in helping to extend the lifetimes of artworks.  My conservation science interests include the protection and conservation of modern art and public murals. Specifically, I study the chemical, physical, and optical stability of acrylic paints, and optimize polymeric protective coatings for outdoor cultural heritage objects. Current research focuses on the formulation of not only an environmentally-friendly shampoo for art (also known as anti-graffiti coating), but UV-blocking sunscreen as well! For fun, I work with art conservators to analyze works of art to better understand how they were made or what happened to them during their history of existence. For more details on an example, click here

Ellane J. Park, Ph.D.
Assistant Professor of Chemistry
Bush 118A
407.646.2520

B.A., Chemistry, Wellesley College, 2006
M.A., Chemistry, Columbia Univeristy, 2008
M.Phil., Chemistry, Columbia University, 2010
Ph.D., Materials Chemistry, Columbia University, 2011
Consultant, ClearView Healthcare Partners, 2011-2012

Specialties: Analytical, General

Research: The advancement of biomaterials research has become more significant in recent years as the need for biocompatible, bioselective medical devices has grown. As surfaces of biomedical devices are often the first part of the device that interacts with the biological host, it is crucial to develop a method that is able to control and modify these surface properties. One theme in the Park research group is the development of bioselective gold nanocomposites that can serve as a platform for a new kind of cancer treatment. Gold nanoparticles are of special interest due to their unique ability to effectively convert light energy into the form of heat and potentially act as delivery vehicles of anti-cancer therapeutics to solid tumor sites. My lab will use tools in analytical and photochemistry to achieve the following objectives: (1) develop a photografting method that allows for the attachment of nearly any biomolecule onto gold nanoparticle surfaces, and (2) produce biocompatible, highly selective nano-vehicles for diagnostics and therapeutics. Other projects in the Park research group include the fabrication of thin films on a wide selection of surfaces (e.g., gold, silicon) using nano- and/or polymeric materials for biomedical applications.

James D. Patrone, Ph.D.
Assistant Professor of Chemistry
Bush 214A
407.646.2201

B.S.P.S., Medicinal & Biological Chemistry, University of Toledo, 2005

Ph.D., Medicinal Chemistry, University of Michigan, 2010
Post-Doctoral Research, Vanderbilt University Medical Center, 2010-2015

Specialties: Organic, Biochemistry

Research: Fragment-Based Ligand Discovery (FBLD) is a modern technique for the discovery of chemical matter for challenging targets in drug discovery and basic research. My research interests are in the area of applying FBLD in basic cancer research. My laboratory consists of two major projects: 1. The synthesis of improved fragment molecules to establish a library specifically designed for the identification and rapid optimization of protein-protein interaction inhibitors. This project consists of synthesizing (3-5 steps) small libraries of multivariate molecules. 2. The fragment-based development of inhibitors of the glycolysis pathway, to take advantage of the Warburg Effect. This project will consist of screening fragments against enzymes in the glycolysis pathway, identification of fragment hits, and optimization of the fragments into potential lead molecules.

William Personette, Ph.D.
Adjunct Professor of Chemistry
407.646.2223

B.S., Forestry, North Carolina State University, 1980
B.S., Soil Science, North Carolina State University, 1981
M.Sc., Chemistry, North Carolina State University, 1986 
Ph.D., Chemistry, University of Florida, 1993

Bio: As an adjunct professor in the Chemistry Department at Rollins College since 2000, my emphasis has been on teaching courses for those students not majoring in the sciences. These courses have included the Chemistry of Life and more recently and presently the Chemistry of Art. In addition, I was a visiting professor at Rollins College from 1992 to 1994, an adjunct professor at Valencia Community College from 1994 to 1996, and am presently a teacher at Trinity Preparatory School here in Winter Park, having worked there full-time since 1995. During this time I’ve taught courses in organic, inorganic, and general chemistry, including AP Chemistry since 1997. I’ve also guided the research of a couple of students at Rollins College some years ago. I really enjoy teaching in the classroom and the laboratory, and that is where I’ve spent my time and energy. 

Kasandra J. Riley, Ph.D.
Assistant Professor of Chemistry
Bush 214C
407.646.2250
Visit Website

B.A., Chemistry, Biochemistry, & Biology, Wartburg College, 2002
Ph.D., Biomedical Science: Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, 2007
Post-Doctoral Research, Yale University, 2007-2012

Specialties: Biochemistry, General

Research: The first cancer-causing virus was discovered ~50 years ago, but we still have no vaccine or cure for it.  Together with my students, we are currently exploring the interplay between cancer-causing viruses and infected human cells.  We identified and are currently exploring thousands of gene transcripts that are regulated by human and viral microRNAs: tiny non-coding RNAs that base pair with specific messenger RNAs to down-regulate them. It is our hope that our research will contribute to a greater understanding of how the virus causes cancer and thereby pinpoint good targets for future anti-viral drug development.  The Riley Lab’s projects are interdisciplinary, combining foundational elements of biochemistry, bioinformatics, molecular biology, cell biology, and genetics.

James Zimmerman, Ph.D.
Director, Christian A. Johnson Institute for Effective Teaching; Associate Professor of Chemistry
108 Warren Administration Bldg.
407.646.2261

B.S., Chemistry, University of Illinois Urbana-Champaign, 1994
Ph.D., Chemistry, University of Michigan, 2000

Specialties: Nuclear, General, Physical

Bio: A nuclear chemist with a passion for learning and teaching issues, James has participated in faculty professional development activities at the local, national, and international level. These activities have included the development of a Teaching Fellowship program that supports faculty interested in Scholarship of Teaching and Learning studies, the design of assessment protocols for multi-institution projects, the mentoring of university and college faculty team projects designed to improve college learning environments with an emphasis on addressing issues that often discourage women and minorities from pursuing study in the sciences or mathematics, and the presentation of NSF-sponsored Multi-Initiative Dissemination (MID) project curriculum to cohorts of science faculty from a wide-range of academic institutions. Dr. Zimmerman has taught undergraduate and graduate courses in general, nuclear, and physical chemistry and has won university awards for his teaching. His scholarly agenda currently includes program, project, and classroom assessment, integrative learning theory, and traditional faculty development. 

Support Staff

Beverley Bridge
Chemical Stockroom & Laboratory Manager
Bush 261
407.646.2411
Wilbur Kersey
Electronics Technician
Bush 012
407.646.2339
Pamela Mason
Administrative Assistant
Bush 110
407.646.2223

Department of Chemistry
Rollins College
1000 Holt Ave. - 2743
Winter Park, FL 32789
407.646.2223
Bush Science Center
pmason@rollins.edu