Biology Faculty and Staff

Faculty

Bobby Fokidis
Assistant Professor
Bush Science Center, room 312B
(407) 646-2452
Visit Website

B.S. University of Toronto,  2001
M.S. Arkansas State University,  2004
Ph.D. Arizona State University,  2010

Food security is a term we use to describe both the availability of food and the ability of an individual to access food. Food insecurity activates various endocrine systems which can impact health, and alter behaviors, such as inducing aggressive conflict over access to a limited resource. My research investigates the biological mechanisms that link an individual’s perceptions of food security, their energetic status, and their physiological and behavioral responses. Specifically the goals of my research program are to: (1) Characterize the neuroendocrine interactions between steroids and neuropeptides that integrate formation about energetic state with behavior; (2) Investigate how natural or human-induced fluctuations in food alter these neuroendocrine signals; and (3) Understand how physiological and behavioral responses to food availability have influenced the evolution of life-history traits. This novel research integrates a reductionist perspective with a broader understanding of the organism in the context of its environment, and provides a physiological basis for a topic of increasing social importance.

Eileen Gregory
Professor Emerita of Biology
Bush Science Center, room 369
(407) 646-2430

B.S. Michigan State University, 1974
M.S. University of Washington, 1976
Ph.D. University of Washington, 1979

I am trained as a microbiologist and immunologist, but my most recent research focus is on improving science education at the college and precollege levels.   My primary teaching goal is to excite students about biology while also providing the knowledge and skills necessary for a successful career.  I am always experimenting with the use of technology in the college classroom and enjoy discovering new methods for engaging students in the learning process.  After 35 years at Rollins I have retired from my full-time position but will be teaching courses each fall term through 2016.

Fiona Harper
Associate Professor and Chair
Bush Science Center, room 218C
(407) 646-2613

BSc University of Guelph, 1995
MSc Memorial University of Newfoundland, 1998
Ph.D. Dalhousie University, 2004

I am a marine evolutionary biologist. I am particularly interested in how speciation in the marine environment occurs, hybridization between species, and population genetics of marine organisms. While I am continuing to investigate hybridization between two sister species of sea stars in the Northwest Atlantic (Asterias forbesi and A. rubens), I am also collaborating on a population genetics study of the white mangrove in the Caribbean. I have also worked on hybridization and population genetics studies of blue mussels and sea urchins. The type of studies I conduct range from morphological studies of live animals, to fertilization studies between sperm and eggs in vitro, to molecular studies of the nuclear and mitochondrial DNA.

Kathryn H. Hickman
Adjunct Professor
Bush Science Center, room 187
(407) 646-2427

A.B. Rollins College, 1980
Ph.D. Emory University, 1987


My Ph.D. is in the areas of molecular and developmental biology and my research involved the isolation and characterization of muscle protein genes and their transcripts. I first came to Rollins as a student in 1976 and returned as a Visiting Assistant Professor in 1989. I have taught here since then. Because of the broad biology background I attained as an undergraduate student at Rollins and because of the diversity of courses that I have taught over the years, I have evolved into a “General Biologist” and enjoy teaching a wide range of biology courses. I particularly enjoy the challenge of trying to communicate an understanding and appreciation of science to non-science majors.

Karen E. Jackson
Visiting Assistant Professor of Biology
Bush Science Center, room 361
(407) 646-2453

B.A. Jacksonville University, 1989
Ph.D. University of Florida, 1995

I currently have two research interests - the Florida manatee and the Greek god Thanatos.  

One of my first research projects involving undergraduates was understanding the immunogenetics of the Florida manatee, Trichecus manatus latirostris.  These gentle giants have suffered from the toxins released during algae blooms and it is suspected that the toxin may be a super-antigen. Understanding the major histocompatibility locus and T cell receptor molecule could potentially be used to prevent sickness and death from these blooms by the design of vaccines or other protective treatments. And given that the MHC locus is typically the most polymorphic in the genome, genetic testing could provide insight into the genetic health and inbreeding risk that this species faces.
I first got involved with the anti-microbial peptide thanatin because my student at the time had always been interested in Greek mythology, Thanatos is the personification of death. Thanatin is secreted by the soldier bug, Podisus maculiventris, in response to infection. Only a few research groups are actively working on this antimicrobial peptide, but we do know that it has very broad specificity (gram positive, gram negative and fungal species). With the overuse of antibiotics and the rise of antibiotic resistance, we must once again look to nature to prevent illness and death from pathogens. The numerous and diverse collection of antimicrobial peptides are likely the future of infectious disease management.

Stephen W. Klemann
Professor Emeritus of Biology
Bush Science Center, room 118B
(407) 646-2290

B.A. Hanover College, 1975
M.S. Miami University (Oxford, Ohio), 1978
Ph.D. Miami University (Oxford, Ohio), 1982

My teaching and research interests lie in the converging disciplines of Developmental, Cellular and Molecular Biology. In addition to participating in the General Biology curriculum, I teach Human Reproduction and Development for general education, and Developmental Biology, Cellular Biology, Molecular Biology, and Seminar courses for our programs in Biology and Biochemistry and Molecular Biology.   For many years my research focused on the cloning, characterization, and engineering of genes expressed by peri-implantation stage ovine and bovine conceptuses and the uterine endometrium.  The products of these genes contribute to the communication that occurs between the conceptus and the female early in pregnancy to ensure that pregnancy is established and maintained.  More recently, I have worked in cancer cell biology examining gene expression in human breast, prostate, as well as head and neck squamous cell carcinomas.  I employ DNA microarray methods to obtain genome wide perspectives on gene expression followed by qRT-PCR methods to quantitatively assess the expression of genes of interest identified by microarrays.  This work, which integrates select Rollins undergraduates, is performed at Rollins and in collaboration with scientists at the Cancer Research Institute, M.D. Anderson-Orlando.  

Jay Pieczynski
Assistant Professor
Bush Science Center, room 363
(407) 646-2433

B.S. University of Wisconsin-LaCrosse, 2004
Ph.D. University of Michigan, 2010

One of the major roles of the cytoskeleton is to act as the cellular interstate system, moving cargo efficiently over long distances.  One of the most basic scientific questions is how proteins, cargos, and even the cytoskeleton itself move, change, and respond to facilitate signal transduction.  Defects in microtubule-associated cell signaling dynamics can be directly implicated in such pathologies as cancer, neurodegenerative disease, infertility, and polycystic kidney disease.  My research involves understanding the in vivo dynamics of microtubules and microtubule motor proteins in cell signaling and behavior Using the model system Caenorhabditis elegans, I use a combined genetic, cellular, and organismal approach to studying these processes at physiologically relevant levels in the entire organism.  

Paul T. Stephenson
Associate Professor
Bush Science Center, room 214B
(407) 646-2481

B.A.  Hartwick College, 1984
M.S. Johns Hopkins University, 1992
Ph.D. University of Massachusetts-Amherst, 1998

My current research interests include investigating the regulation of hydrolytic enzyme secretion in carnivorous pitcher plants (particularly Nepenthes ventricosa), cloning and characterizing candidate enzymes, using fluorescent in situ hybridization to identify their presence in specific tissues, and Real Time PCR to assess their expression.  In 2007 I began a new research project investigating hydrolytic enzymes involved in mixotrophic metabolism of toxic, algal bloom causing dinoflagellates.  Most recently I have begun a population genetics study of White Mangrove (Laguncularia racemosa).  In the past I have worked on projects studying programmed cell death during floral senescence and vascular tissue differentiation.

Kathryn P. Sutherland
Associate Professor
Bush Science Center, room 114A
(407) 691-1075

B.A. Wellesley College, 1994
M.S. University of Georgia, 1997
Ph.D. University of Georgia, 2003

I am a coral reef ecologist and a coral disease microbiologist.   I specialize in both field identification and laboratory investigation of coral disease. As a field biologist, I monitor reefs for change in coral cover over time and I assess coral health through quantification of coral disease prevalence.  In the laboratory I am investigating the prevalence and origin of the pathogen, the bacterium Serratia marcescens, that causes the white pox disease of the Caribbean elkhorn coral, Acropora palmata. White pox disease has contributed to the decimation of this coral species in Florida,with losses averaging 87% since 1996. I am also interested in the identification of other coral disease pathogens and the mechanisms of pathogenesis of these pathogens.

Susan Walsh
Assistant Professor
Bush Science Center, room 273
(407) 646-2534

B.S. Cedar Crest College, 1999
Ph.D. Duke University, 2005

My research focuses on mitochondrial trafficking in the nervous system during zebrafish development. Surprising to many students, mitochondria are not the static kidney beans typically shown in electron micrographs but rather, are dynamic organelles that form elegant networks in a cell. Their motion is dependent on signaling molecules and microtubule-binding proteins. Using transgenic zebrafish with fluorescent mitochondria allows me to watch these events in a living animal. 

Staff

Gail Jones
Administrative Assistant
Bush Science Center, room 110
(407) 646-2494
Ana Rodriguez
Lab Manager
Bush Science Center, room 161
(407) 646-2100
Alan Chryst
Greenhouse Manager
Greenhouse
(407) 646-2399

Work Study Students

Celena Diaz
Biology Lab Assistant since Fall of 2015
Marine Biology Major & Environmental Studies Minor, College of Liberal Arts, Class of 2018
Rachel B. Deena
Biology Office Assistant since Fall 2014
Biology and Environmental Studies Major, College of Liberal Arts, Class of 2017
Eunice Llanos
Greenhouse Assistant since Fall of 2014
Environmental Studies Major/Russian Studies Minor, College of Liberal Arts, Class of 2016

Department of Biology
Rollins College
Bush Science Center
1000 Holt Avenue
Winter Park, FL 32789
T. 407.646.2494
gjones@rollins.edu